Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Braz. j. phys. ther. (Impr.) ; 19(2): 105-113, 27/04/2015. tab, graf
Article in English | LILACS | ID: lil-745814

ABSTRACT

Objective: To verify whether 30 minutes of rest between two incremental shuttle walking tests (ISWT) are enough for cardiovascular variables and perceived exertion to return to baseline values in healthy subjects in a broad age range. Method: The maximal exercise capacity of 334 apparently healthy subjects (age ≥18) was evaluated using the ISWT. The test was performed twice with 30 minutes of rest in between. Heart rate (HR), arterial blood pressure (ABP), dyspnea, and leg fatigue were evaluated before and after each test. Subjects were allocated to 6 groups according to their age: G1: 18-29 years; G2: 30-39 years; G3: 40-49 years; G4: 50-59 years; G5: 60-69 years and G6: ≥70 years. Results: All groups had a good performance in the ISWT (median >90% of the predicted distance). The initial HR (HRi) of the second ISWT was higher than the first ISWT in the total sample (p<0.0001), as well as in all groups (p<0.0001). No difference was observed in the behavior of ABP (systolic and diastolic) and dyspnea between the two tests, but this difference occurred for leg fatigue (greater before the second ISWT) in G1 (p<0.05). Most subjects (58%) performed better in the second test. Conclusion: 30 minutes of rest between two ISWTs are not enough for all cardiovascular variables and perceived exertion to return to baseline values. However, this period appears to be sufficient for blood pressure and performance to recover in most subjects. .


Subject(s)
Humans , Nucleosomes/chemistry , Nucleosomes/metabolism , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Ubiquitination , Crystallography, X-Ray , DNA , Histones/chemistry , Histones/metabolism , Models, Molecular , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
2.
Journal of Korean Medical Science ; : 95-100, 2004.
Article in English | WPRIM | ID: wpr-20645

ABSTRACT

One of the histopathologic hallmarks of early diabetic retinopathy is the loss of pericytes. Evidences suggest that the pericyte loss in vivo is mediated by apoptosis. However, the underlying cause of pericyte apoptosis is not fully understood. This study investigated the influence of methylglyoxal (MGO), a reactive -dicarbonyl compound of glucose metabolism, on apoptotic cell death in bovine retinal pericytes. Analysis of internucleosomal DNA fragmentation by ELISA showed that MGO (200 to 800 micrometer) induced apoptosis in a concentration-dependent manner. Intracellular reactive oxygen species were generated earlier and the antioxidant, N-acetyl cysteine, inhibited the MGO-induced apoptosis. NF-kB activation and increased caspase- 3 activity were detected. Apoptosis was also inhibited by the caspase-3 inhibitor, Z-DEVD-fmk, or the NF- kB inhibitor, pyrrolidine dithiocarbamate. These data suggest that elevated MGO levels observed in diabetes may cause apoptosis in bovine retinal pericytes through an oxidative stress mechanism and suggests that the nuclear activation of NF-kB are involved in the apoptotic process.


Subject(s)
Animals , Cattle , Acetylcysteine/pharmacology , Apoptosis , Caspases/metabolism , Cell Death , Cell Survival , DNA Fragmentation , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Glucose/metabolism , NF-kappa B/metabolism , Nucleosomes/metabolism , Oxidative Stress , Pericytes/drug effects , Pyruvaldehyde/pharmacology , Reactive Oxygen Species , Retina/cytology
SELECTION OF CITATIONS
SEARCH DETAIL